

Pyifx Documentation

Contents:

	Getting Started
	Prerequisites
	Dependencies

	Installation

	Importing the Library

	Image Classes
	What are They?

	Pyifx Image

	Image Volume

	Usage
	Importing an Image
	PyifxImage

	ImageVolume

	PyifxImage list

	Using Imported Images
	Function Categories

	Function Structure

	Full Code Example

	Contribution
	Suggested Prerequisites
	Library Contribution

	Documentation Contribution

	How to Contribute

	Library Structure
	Project Root

	Library Contents

	Function System

	Documentation Structure

	Writing Tests
	Location & Naming

	Test File Structure

	Test Materials

	License

	Enquiries

	API Reference

What is Pyifx?

Pyifx is an image processing, handling, & editing library meant to be used in Python. It provides users with the chance to edit and process images using Python code. The library provides over 20 main features to be used to edit images, including:

	Color overlay

	Blur

	Saturation

	Resize

	And much more.

A full list of available functions is available here.

The library was created by Jad Khalili, and first released in August 2019.

Get Started

To install the library & begin using it, visit the Getting Started Guide.

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

 Image Classes

Image Classes

What are They?

All of the functions in this library are based around the use of Pyifx Image classes. They allow you to store important information about an image in Python while also providing useful functions relating to their properties.

Pyifx Image

The PyifxImage class allows for images to be read, modified, and written in combination with functions provided by the library. This class can either be instantiated through the use of an input and outputh path, or by providing given image data as long as it is in the form of a NumPy ndarray.

Below is an example of what creating instances of the PyifxImage class would look like.

>>> import pyifx
>>> image = pyifx.misc.PyifxImage(input_path="path/to/img.png", output_path="path/to/new_img.png")
>>> image_from_data = pyifx.misc.PyifxImage(input_path=None, output_path="path/to/new_img.png", img=image_data)

Once the class is instantiated, it reads the image located at the specified input path and converts it into a NumPy ndarray. This array can be easily manipulated & worked with to manipulate the represented image.

 >>> image.get_image()
 >>> array([[[174, 173, 213],
 [174, 173, 213],
 [174, 173, 213],
 ...,
 [188, 183, 224],
 [188, 183, 224],
 [188, 183, 224]],

[[174, 173, 213],
 [174, 173, 213],
 [174, 173, 213],
 ...,
 [188, 183, 224],
 [188, 183, 224],
 [188, 183, 224]],

[[174, 173, 213],
 [174, 173, 213],
 [174, 173, 213],
 ...,
 [188, 183, 224],
 [188, 183, 224],
 [188, 183, 224]],

...,

[[94, 110, 135],
 [94, 110, 135],
 [93, 109, 134],
 ...,
 [65, 107, 147],
 [65, 107, 147],
 [65, 107, 147]],

[[95, 111, 136],
 [94, 110, 135],
 [93, 109, 134],
 ...,
 [65, 107, 147],
 [66, 108, 148],
 [66, 108, 148]],

[[96, 112, 137],
 [95, 111, 136],
 [92, 108, 133],
 ...,
 [66, 108, 148],
 [66, 108, 148],
 [67, 109, 149]]], dtype=uint8)

The array is 3-dimensional, with the first dimension representing each row, the second for each pixel, and the third for each channel. The dimensions of the image can be viewed by accessing the shape property of the array.

>>> image.get_image().shape
>>> (1080, 1920, 3)

The reason the height comes before width is due to the fact that the first number represents the number of rows, which makes up the height of the image due to them being stacked on top of each other. The same goes for the width of the image, as well as the image channels.

The methods of this class include:

pyifx.misc.PyifxImage.refresh_image()
pyifx.misc.PyifxImage.get_input_path()
pyifx.misc.PyifxImage.set_input_path()
pyifx.misc.PyifxImage.get_output_path()
pyifx.misc.PyifxImage.set_output_path()
pyifx.misc.PyifxImage.get_image()
pyifx.misc.PyifxImage.set_image()

Note

A full list & description of parameters & methods in the PyifxImage class can be found here or by visiting the library contents page.

Image Volume

The ImageVolume class is a tool used to create and collect PyifxImage instances for a large number of images. Instead of creating these images manually, the class will generate a list of PyifxImage instances based on a provided input directory. The generation method can also be tweaked through adjusting certain parameters when creating instances of the class (ex. Whether to include images from subdirectories.)

On instantiating this class, a ‘volume’ of images will be created based on the specified arguments. Provided below is an example of what using the class might look like.

>>> import pyifx
>>> volume = pyifx.misc.ImageVolume(input_path="lots/of/images/", output_path="lots/of/images/modified/", prefix="_")
>>> print(volume.get_volume())

Running this file will show us what the generated list of images looks like.

>>> [<pyifx.misc.PyifxImage object at 0x0CC66E10>, <pyifx.misc.PyifxImage object at 0x0CC70030>, <pyifx.misc.PyifxImage object at 0x0CC66E50>]

Upon closer inspection, we can see what these images are based off of.

>>> image = volume.get_volume()[0]
>>> image.get_input_path()
>>> "lots/of/images/image_1.jpg"

And if we view the output path of the image, we can see where it leads to.

>>> image.get_output_path()
>>> "lots/of/images/modified/_image_1.jpg"

This is done for every image in the specified directory, and any subdirectories with images in it (if toggled).

The methods of this class include:

pyifx.misc.ImageVolume.volume_to_list()
pyifx.misc.ImageVolume.convert_dir_to_images()
pyifx.misc.ImageVolume.get_input_path()
pyifx.misc.ImageVolume.set_input_path()
pyifx.misc.ImageVolume.get_output_path()
pyifx.misc.ImageVolume.set_output_path()
pyifx.misc.ImageVolume.get_prefix()
pyifx.misc.ImageVolume.set_prefix()
pyifx.misc.ImageVolume.get_volume()
pyifx.misc.ImageVolume.set_volume()

Note

As stated before, a full list & description of parameters & methods in the ImageVolume class can be found here or by visiting the library contents page.

 Usage

Usage

Importing an Image

As stated in the previous section, most of pyifx’s functionality is based around the use of image classes. There are three options to create data that is compatible with the Pyifx library.

PyifxImage

The PyifxImage class allows you to package data about an image into a class instance. This instance can then be passed to functions provided by the library to manipulate image data.

The snippet below shows an example of what creating an instance of this class would look like. You can view the full code example of this article here.

#demo_file.py
import pyifx

Creating the image
image = pyifx.misc.PyifxImage(input_path="path/to/img.png", output_path="path/to/new_img.png")

Note

More information about the PyifxImage class is available here.

ImageVolume

The ImageVolume class allows for the generation of a list of PyifxImage instances based on specified parameters. As with the PyifxImage class, instances of this class can be passed to library-provided functions as well.

Creating an ImageVolume instance is very similar to creating a PyifxImage instance. You can view the full code example of this article here.

Creating the volume
volume = pyifx.misc.ImageVolume(input_path="lots/of/images/", output_path="lots/of/images/modified/", prefix="_")

Note

More information about the ImageVolume class is available here.

PyifxImage list

Lists of PyifxImage instances can also be passed directly into pyifx functions. This can be used to import images from multiple directories, or if PyifxImage instances need to have properties that do not share any patterns or sequences.

Below is an example of what creating a PyifxImage instance list would look like. You can view the full code example of this article here.

#Creating the list
image_2 = pyifx.misc.PyifxImage(input_path="different/path/to/img.png", output_path="different/path/to/new_img.png")

image_list = [image, image_2]

Using Imported Images

Function Categories

Once an image is imported into an accepted class instance, it can be used by any of the main functions in the library. Functions are split into 4 categories based on their main purpose. These categories can be accessed based on the module names listed below:

pyifx.hsl
pyifx.graphics
pyifx.comp
pyifx.misc

	Module name

	Literal translation

	Description

	pyifx.hsl

	HSL (Hue, Saturation, Light)

	Functions in this section are focused around color & its
manipulation. In simple terms, hue refers to the color itself,
saturation to its intensity, and light to how bright or dark the
color is.

	pyifx.comp

	Compositon

	This section contains functions related to the manipulation of the
properties of images. This includes its dimensions and file type
among other properties.

	pyifx.graphics

	Graphics

	This section focuses on the look and composition of images as a
whole. Functions in this section mostly apply effects to images to
change their look, such as blurs and pixelations.

	pyifx.misc

	Miscellaneous

	Unlike the composition module, this section focuses on managing
images instead of editing them. Functions and classes in this
module include image classes and image import functions.

Note

A full list of functions is available here. To view functions contained in specific categories, visit the category’s specific page mentioned in the table of contents.

Function Structure

pyifx functions accept any of the image classes mentioned in the import section. They return a new, modified instance of the same class or type as provided in the function. What is modified can vary based on what the function does. This is usually the image data; however, functions can also return modified input and output paths, prefixes (for ImageVolume instances), and other properties.

Below is an example of what using a pyifx function would look like.

brightened_image = pyifx.hsl.brighten(image, 50)
print(type(brightened_image))

If this file is run, we can see what the return value of this function would look like.

$ python demo_file.py
<class 'pyifx.misc.PyifxImage'>

The return value type always matches the image input type, regardless of the function.

brightened_list = pyifx.hsl.brighten(image_list, 50)
print(type(brightened_list))

$ python demo_file.py
<class 'list'>

Full Code Example

#demo_file.py
import pyifx

Creating the image
image = pyifx.misc.PyifxImage(input_path="path/to/img.png", output_path="path/to/new_img.png")

Creating the volume
volume = pyifx.misc.ImageVolume(input_path="lots/of/images/", output_path="lots/of/images/modified/", prefix="_")

#Creating the list
image_2 = pyifx.misc.PyifxImage(input_path="different/path/to/img.png", output_path="different/path/to/new_img.png")

image_list = [image, image_2]

brightened_image = pyifx.hsl.brighten(image, 50)
print(type(brightened_image))

brightened_list = pyifx.hsl.brighten(image_list, 50)
print(type(brightened_list))

 Contribution

Contribution

Contribution is an essential step to improving and growing this project. If you want to contribute, please read this short guide detailing the steps you need to take to begin collaborating on this project.

Suggested Prerequisites

You can contribute in may ways besides helping write the underlying code; testers and technical writers are also very important to this project. Please read the list of suggested prerequisites before starting.

Library Contribution

This library is written in Python, so some fundamental understanding of Python can help you navigate the library. Additional libraries (both internal and external) used in the library include:

	NumPy

	Imageio

	OS

	Math

Understanding these libraries as a whole is not needed. However, understanding their purpose and what some of their main modules do can help when faced with code that uses them.

Documentation Contribution

Our doucmentation is written in Sphinx, a Python-based documentation tool. You can learn more about Sphinx by visiting their user guide [https://www.sphinx-doc.org/en/master/index.html].

For those looking to work on the structure of the documentation, some understanding of Sphinx and RST (reStructuredText) can be helpful. However, if you are more focused on the content of the documentation, then these tools will not be of much use. No matter what you are focusing on, some understanding of these tools is still highly recommended.

How to Contribute

Any contributions to this project must be done through GitHub pull requests. If you aren’t familiar with pull requests, please read this guide [https://help.github.com/en/articles/about-pull-requests] talking more about them.

All pull request descriptions must include:

	A short summary of what the change is doing

	Why the change is being made

	Any future expansions or plans to expand on the change (if any at all)

Any pull requests with insufficient data will be ignored.

Once a pull request is made, it will be reviewed. If the change is seen as beneficial or needed, it will be merged into the project.

Library Structure

Project Root

The root of the project contains files other than the library itself. Below is a table detailing the function of each of these files or directories.

	File/Directory name

	Purpose

	docs

	Contains all the documentation files for the project, including both build and source files

	pyifx

	The main library. Contains all of the source code and required package files. Any contributions to the library can be made here.

	tests

	Includes test materials & altered images.

	tests_src

	Contains the source files for tests.

	.gitignore

	Required for ignoring build files regarding version control.

	LICENSE

	The license for the project.

	README.md

	The README for the project.

Library Contents

The main library directory contains files that represent each module.

pyifx|
 hsl.py
 graphics.py
 comp.py
 misc.py
 INTERNAL.py

To reference a module in a python file (after importing the module), add the name of the module after pyifx.. For example, referencing the hsl.py file can be done by writing pyifx.hsl.

The library is split into 2 main parts; external and internal functions. External functions are found in the main 4 modules of the library (hsl, graphics, comp, misc) and are made to be used outside the library.

On the other hand, internal functions are made to be used by the library itself. It contains handlers and main algorithms for all of the library’s features. These functions are located solely in the file INTERNAL.py, and can be referenced the same way as other modules.

Note

Currently, no documentation is provided for the INTERNAL module. It will be added in the coming weeks.

Function System

All external functions follow a specific system to handle inputs properly. The system follows a set of steps similar to the flow chart below:

External function -----------------> Function handler (INTERNAL) -----------------> Function operation (INTERNAL)
 - Type checking - Value checking - Modifies image
 - Handles different image types - Core image

	External Function - The function that is called by the user. This is where the user specifies the parameters of the function, and where the function arguments are checked for the correct type.

	Function Handler - This function checks the arguments themselves (ex. percent is between 0 and 100) instead of their type. It also handles the various types of image classes that can be entered and calls the appropriate functions in return.

	Function Operation - This is where the actual modification of the image happens. Unlike their handlers, most of these functions only accept PyifxImage instances, instead of the variety of types that the external functions accept.

Handler functions end with _handler, and operation functions end with _operation. Both handler and operation functions also begin with _, meaning they are internal and private. Any new features added to the library must follow this system.

Documentation Structure

Because the documentation is written in Sphinx & RST, it can mostly be edited using the same rules & syntax as any other project using the same tools. However, there are a few important exceptions to note.

Titles are underlined using =, subtitles use -, and sub-subtitles use *. No overlining is required.

New functions are automatically documented as long as they have a docstring. Below is an example of the proper way to format a docstring.

""" detect_edges(img_paths, write=True)
 Takes image(s) and creates new images focusing on edges.

 :type img_paths: pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list
 :param img_paths: The image(s) to be manipulated.

 :type write: bool
 :param write: Whether to write the manipulated image(s).

 :return: PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage
 :rtype: pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

"""

Classes need to have docstrings for each individual method. However, the class itself can have a docstring to document information about the class as well as its members. Below is an example of a class docstring.

""" A class used to create packages of images & their properties created for use with the Pyifx library.

 :vartype input_path: str, NoneType
 :ivar input_path: The path to where the image is located. If the image does not have an input path, it means that the instance is a result of combining two or more images.

 :vartype output_path: str, NoneType
 :ivar output_path: The path to where edited images should be created. If the image does not have an output path, it means the instance is used for read-only purposes.

 :vartype image: numpy.ndarray, NoneType
 :ivar image: The image located at the input path in the form of a numpy n-dimensional array. If the instance does not have an image property, it means that the image had not been read.

"""

Here is a table of some of the common formatting tags used to reference certain parts of docstrings for both functions and classes.

	Tag

	Description

	:vartype MEMBER:

	The member type (for classes).

	:ivar MEMBER:

	The member description (for classes).

	:type PARAMETER:

	The parameter type (for functions).

	:param PARAMETER:

	The parameter description (for functions).

	:return:

	The return value description (for functions).

	:rtype:

	The return value type (for functions).

Although functions can be added to the API reference automatically, they still needed to be added to the ‘Library Contents’ page manually. If a new function has been approved, it needs to be added to the ‘Library Contents’ page manually. This page uses the Sphinx autosummary directive to add functions to the page. Below shows an example of what adding a new function would look like.

pyifx.graphics

.. autosummary ::

 pyifx.graphics.function_here
 pyifx.graphics.Class
 pyifx.graphics.new_function <---- New function here

If the module is new and must be added, write the module name (in the format of the module name above) and bold it. Under that, add an autosummary directive and add the function to the list, making sure to follow the same format as the example above. Classes can be added in the same way.

Writing Tests

Writing tests is one of the most important parts of this project. Whether it is due to changing an existing feature or adding a new one, tests must be written in order to verify the validity of a change to the library. In order to keep tests organized, a few rules must be followed for writing them.

Location & Naming

As seen in the project root table, the tests directory contains test input & output files, while the tests_src directory is used to store test sources files. Any new tests must be written & saved in the tests_src directory.

Each test file is dedicated to an individual function. Functions must have individual test files and cannot be combined together. Files are named after the function as if they were being referenced from the root package.

tests_src |
 pyifx.hsl.brighten.py
 pyifx.hsl.darken.py
 ...
 pyifx.misc.combine.py
 ...

As seen above, the test file for the “brighten” function is named “pyifx.hsl.brighten.py”, after its location in the package.

Test File Structure

Tests follow a specific structure in order to thoroughly cover every situation. Below is an example of what a test file would look like.

pyifx.graphics.convolute_custom.py

Import test materials
from test_vars import *

Set output path(s)
set_paths("../tests/imgs/graphics/convolute_custom")

Custom variables (optional)
sobel_horizontal_np = np.array([[-1,0,1], [-2,0,2], [-1,0,1]])
sobel_vertical = np.array([[-1,-2,-1], [0,0,0], [1,2,1]])
box_blur = np.array([[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]])

Main tests
pyifx.graphics.convolute_custom(img1, sobel_horizontal_np)
pyifx.graphics.convolute_custom(img_list, sobel_vertical)
pyifx.graphics.convolute_custom(img_vol, box_blur)

Error tests
call_error_test("pyifx.graphics.convolute_custom", ['s', sobel_horizontal_np])
call_error_test("pyifx.graphics.convolute_custom", [img1, 's'])
call_error_test("pyifx.graphics.convolute_custom", [img1, sobel_horizontal_np, 's'])

	Test materials: Test materials, including variables & functions are located in the test_vars.py file, and can be imported using this statement.

	Output path: The directory to which any ouput files should be written. This path should be written in the format ../tests/imgs/*module*/*function_name*.

	Custom variables: Any extra variables needed for the tests. These should only be included if required by the function.

	Main tests: Where the tests should be ran. The tests must be ran for all of the variables included in the test materials, & any other parameters should include a variety of values.

	Error tests: Where the error handling of the function is tested through the call_error_test function. Try to include all types of potential errors.

Test Materials

All materials needed for the test are provided in the test_vars.py file, which is located in the same directory as the rest of the tests. This file includes:

	Path-changing function (to help changing paths for individual variables)

	Error handler & catcher

	Variables (2x PyifxImage Instance, 1x ImageVolume, 1x Image List)

	
set_paths(new_path)

	Changes the output path of test variables.

	Parameters

	new_path (str) – The new output path.

	
call_error_test(function, arguments)

	Calls a function with a provided list of arguments & catches any errors that arise. Prints message if caught successfully.

	Parameters

	
	function (str) – The function to be called. Should be referenced from package (eg. pyifx.hsl.brighten). Does not include parentheses.

	arguments (list) – The arguments to be passed to the function. Should be contained in a list (in order of passing to the function).

	Returns

	Boolean indicating if the error was caught.

	Return type

	bool

 License

License

MIT License

Copyright (c) 2019 Jad Khalili

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Enquiries

Enquiries

If you have any questions or suggestions about the project, feel free to email me at jad@videolab.ae or jad.khalili123@gmail.com.

 API Reference

API Reference

pyifx.hsl

	pyifx.hsl.brighten(img_paths[, percent, write])

	Takes image(s) and brightens them.

	pyifx.hsl.darken(img_paths[, percent, write])

	Takes image(s) and darkens them.

	pyifx.hsl.color_overlay(img_paths, color[, …])

	Takes image(s) and applies a specified color over it/them.

	pyifx.hsl.saturate(img_paths[, percent, write])

	Takes image(s) and saturates them.

	pyifx.hsl.desaturate(img_paths[, percent, write])

	Takes image(s) and desaturates them.

	pyifx.hsl.to_grayscale(img_paths[, write])

	Takes image(s) and converts them to grayscale.

pyifx.graphics

	pyifx.graphics.blur_gaussian(img_paths[, …])

	Takes images(s) and blurs them using a gaussian kernel based on a given radius.

	pyifx.graphics.blur_mean(img_paths[, …])

	Takes images(s) and blurs them using a mean kernel based on a given radius.

	pyifx.graphics.pixelate(img_paths[, factor, …])

	Takes image(s) and pixelates them based on a given factor.

	pyifx.graphics.detect_edges(img_paths[, write])

	Takes image(s) and creates new images focusing on edges.

	pyifx.graphics.convolute_custom(img_paths, …)

	Takes image(s) and creates new images that are convoluted over using a given kernel.

pyifx.comp

	pyifx.comp.resize(img_paths, new_size[, write])

	Takes image(s) and converts them to a given size.

	pyifx.comp.change_file_type(img_paths, new_type)

	Takes image(s) and converts them to a given file type.

	pyifx.comp.rewrite_file(img_paths)

	Takes image(s) and writes them to an output destination based on their properties.

pyifx.misc

	pyifx.misc.PyifxImage(input_path[, …])

	A class used to create packages of images & their properties created for use with the Pyifx library.

	pyifx.misc.ImageVolume(input_path, output_path)

	A class used to import images from a directory into Python, creating a list of PyifxImage instances.

	pyifx.misc.combine(img1, img2, out_path[, write])

	Combines the data of two PyifxImages, ImageVolumes, or ImageLists to form new PyifxImages.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyifx	

 	
 	
 pyifx.comp	

 	
 	
 pyifx.graphics	

 	
 	
 pyifx.hsl	

 	
 	
 pyifx.misc	

 Index

Index

 _
 | B
 | C
 | D
 | G
 | I
 | P
 | R
 | S
 | T
 | V

_

 	
 	__init__() (pyifx.misc.ImageVolume method)

 	(pyifx.misc.PyifxImage method)

 	
 	__weakref__ (pyifx.misc.ImageVolume attribute)

 	(pyifx.misc.PyifxImage attribute)

B

 	
 	blur_gaussian() (in module pyifx.graphics)

 	
 	blur_mean() (in module pyifx.graphics)

 	brighten() (in module pyifx.hsl)

C

 	
 	call_error_test() (built-in function)

 	change_file_type() (in module pyifx.comp)

 	color_overlay() (in module pyifx.hsl)

 	
 	combine() (in module pyifx.misc)

 	convert_dir_to_images() (pyifx.misc.ImageVolume method)

 	convolute_custom() (in module pyifx.graphics)

D

 	
 	darken() (in module pyifx.hsl)

 	
 	desaturate() (in module pyifx.hsl)

 	detect_edges() (in module pyifx.graphics)

G

 	
 	get_image() (pyifx.misc.PyifxImage method)

 	get_input_path() (pyifx.misc.ImageVolume method)

 	(pyifx.misc.PyifxImage method)

 	
 	get_output_path() (pyifx.misc.ImageVolume method)

 	(pyifx.misc.PyifxImage method)

 	get_prefix() (pyifx.misc.ImageVolume method)

 	get_volume() (pyifx.misc.ImageVolume method)

I

 	
 	ImageVolume (class in pyifx.misc)

P

 	
 	pixelate() (in module pyifx.graphics)

 	pyifx.comp (module)

 	pyifx.graphics (module)

 	
 	pyifx.hsl (module)

 	pyifx.misc (module)

 	PyifxImage (class in pyifx.misc)

R

 	
 	refresh_image() (pyifx.misc.PyifxImage method)

 	
 	resize() (in module pyifx.comp)

 	rewrite_file() (in module pyifx.comp)

S

 	
 	saturate() (in module pyifx.hsl)

 	set_image() (pyifx.misc.PyifxImage method)

 	set_input_path() (pyifx.misc.ImageVolume method)

 	(pyifx.misc.PyifxImage method)

 	
 	set_output_path() (pyifx.misc.ImageVolume method)

 	(pyifx.misc.PyifxImage method)

 	set_paths() (built-in function)

 	set_prefix() (pyifx.misc.ImageVolume method)

 	set_volume() (pyifx.misc.ImageVolume method)

T

 	
 	to_grayscale() (in module pyifx.hsl)

V

 	
 	volume_to_list() (pyifx.misc.ImageVolume method)

 Composition

Composition

Description

This section contains functions related to the manipulation of the properties of images. This includes its dimensions and file type among other properties. In other words, most functions in this section modify the structure of images rather than their contents.

Function List

	
pyifx.comp.change_file_type(img_paths, new_type, write=True)

	Takes image(s) and converts them to a given file type.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be converted.

	new_type (str) – The file type that the image(s) should be converted to. Available types: PNG, JPG, JPEG. Can be entered with/without the dot. Parameter is case-insensitive.

	write (bool) – Whether to write the converted image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.comp.resize(img_paths, new_size, write=True)

	Takes image(s) and converts them to a given size.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be resized.

	new_size (str) – The new size to convert the image(s) to. It must be entered in the form “WidthxHeight”.

	write (bool) – Whether to write the resized image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.comp.rewrite_file(img_paths)

	Takes image(s) and writes them to an output destination based on their properties. Intended for use with changes to pyifx class instances.

	Parameters

	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be rewritten.

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

 Graphics

Graphics

Description

This section focuses on the look and composition of images as a whole. Functions in this section mostly apply effects to images to change their look, such as blurs and pixelations. This section covers a wider variety of tools compared to the HSL module.

Function List

	
pyifx.graphics.blur_gaussian(img_paths, radius=3, size=None, write=True)

	Takes images(s) and blurs them using a gaussian kernel based on a given radius.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be blurred.

	radius (int) – The radius of the gaussian kernel. If nothing is entered for this parameter, it will default to 3.

	size (list, NoneType) – The dimensions of the gaussian kernel. Must be entered in

	write (bool) – Whether to write the blurred image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.graphics.blur_mean(img_paths, radius=3, write=True)

	Takes images(s) and blurs them using a mean kernel based on a given radius.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be blurred.

	radius (int) – The radius of the mean kernel. If nothing is entered for this parameter, it will default to 3.

	write (bool) – Whether to write the blurred image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.graphics.convolute_custom(img_paths, kernel, write=True)

	Takes image(s) and creates new images that are convoluted over using a given kernel.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be convoluted over.

	kernel (numpy.ndarray, list) – The kernel to be used for convolution. This can be provided in either a 2-dimensional list or a numpy 2-dimensional array.

	write (bool) – Whether to write the convoluted image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.graphics.detect_edges(img_paths, write=True)

	Takes image(s) and creates new images focusing on edges.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be manipulated.

	write (bool) – Whether to write the manipulated image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.graphics.pixelate(img_paths, factor=4, write=True)

	Takes image(s) and pixelates them based on a given factor.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be pixelated.

	factor (int) – How much the image(s) should be pixelated. If nothing is entered for this parameter, it will default to 4.

	write (bool) – Whether to write the pixelated image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

 HSL

HSL

Description

This section is focused around color & its manipulation. In simple terms, hue refers to the color itself, saturation to its intensity, and light to how bright or dark the color is. This module provides functions that edit the hue, saturation, and light of an image in a variety of ways.

Function List

	
pyifx.hsl.brighten(img_paths, percent=45, write=True)

	Takes image(s) and brightens them.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be brightened.

	percent (int) – How much the image(s) should be brightened. If nothing is entered for this parameter, it will default to 45. The parameter must be between 0 and 100 (inclusive).

	write (bool) – Whether to write the brightened image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.hsl.color_overlay(img_paths, color, opacity=30, write=True)

	Takes image(s) and applies a specified color over it/them.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be manipulated.

	color (numpy.ndarray, list) – The color to be applied over the image(s). This parameter should be specified in the format [Red, Green, Blue], with each component being between 0 and 255 (inclusive).

	opacity (int) – How visible the color should be. If nothing is entered for this parameter, it will default to 30. It should be between 0 and 100 (inclusive).

	write (bool) – Whether to write the darkened image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.hsl.darken(img_paths, percent=45, write=True)

	Takes image(s) and darkens them.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be darkened.

	percent (int) – How much the image(s) should be darkened. If nothing is entered for this parameter, it will default to 45. The parameter must be between 0 and 100 (inclusive).

	write (bool) – Whether to write the darkened image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.hsl.desaturate(img_paths, percent=30, write=True)

	Takes image(s) and desaturates them.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be desaturated.

	percent (int) – How much the image(s) should be desaturated. If nothing is entered for this parameter, it will default to 30. The parameter must be between 0 and 100 (inclusive).

	write (bool) – Whether to write the desaturated image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.hsl.saturate(img_paths, percent=30, write=True)

	Takes image(s) and saturates them.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be saturated.

	percent (int) – How much the image(s) should be saturated. If nothing is entered for this parameter, it will default to 30. The parameter must be between 0 and 100 (inclusive).

	write (bool) – Whether to write the saturated image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

	
pyifx.hsl.to_grayscale(img_paths, write=True)

	Takes image(s) and converts them to grayscale.

	Parameters

	
	img_paths (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The image(s) to be converted.

	write (bool) – Whether to write the grayscale image(s).

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

 Miscellaneous

Miscellaneous

Description

Unlike the composition module, this section focuses on managing images instead of editing them, no matter what the module is editing. Functions and classes in this module include image classes and image import functions.

Function List

	
class pyifx.misc.ImageVolume(input_path, output_path, prefix='_', level=1)

	A class used to import images from a directory into Python, creating a list of PyifxImage instances.

	Variables

	
	input_path (str) – The path to the directory where the images are located.

	output_path (str) – The path where images in the volume should be saved.

	prefix (str) – The prefix for edited image file names.

	volume (list) – The list of images imported from the input path.

	
__init__(self, input_path, output_path, prefix="_", level=1)

	The ImageVolume constructor method.

	Parameters

	
	input_path (str) – The path to the directory where the images are located.

	output_path (str) – The path where images in the volume should be saved.

	prefix (str) – The prefix for edited image file names. If nothing is entered for this parameter, it will default to “_”.

	level (int) – The depth to which images should be imported from subdirectories. For infinite depth, set this value to 0. If nothing is entered, this value will default to 1, importing from the root directory exclusively.

	Returns

	ImageVolume instance

	Return type

	pyifx.misc.ImageVolume

	
__weakref__

	list of weak references to the object (if defined)

	
convert_dir_to_images(input_dir, level=1)

	convert_dir_to_images(input_dir, level=1):
Converts files from a given directory into PyifxImage instances.

	Parameters

	
	input_dir (str) – The directory to read files from.

	level (int) – The depth to which images should be imported from subdirectories. For infinite depth, set this value to 0. If nothing is entered, this value will default to 1, importing from the root directory exclusively.

	Returns

	List with elements of type PyifxImage

	Return type

	list

	
get_input_path()

	get_input_path(self):
Gets the instances input path and returns it.

	Returns

	Input path

	Return type

	str

	
get_output_path()

	get_output_path(self):
Gets the instances output path and returns it.

	Returns

	Output path

	Return type

	str

	
get_prefix()

	get_prefix(self):
Gets the instances prefix property and returns it.

	Returns

	Prefix

	Return type

	str

	
get_volume()

	get_volume(self):
Gets the instances volume and returns it.

	Returns

	List of images of type PyifxImage OR An empty array

	Return type

	list

	
set_input_path(new_input_path, level=1)

	set_input_path(self, new_input_path, level=1):
Sets the instances input path and returns it.

	Parameters

	
	new_input_path (str) – What the input path will be set to.

	level (int) – The depth to which images should be imported from subdirectories. For infinite depth, set this value to 0. If nothing is entered, this value will default to the previously set level of the class.

	Returns

	ImageVolume instance

	Return type

	pyifx.misc.ImageVolume

	
set_output_path(new_output_path)

	set_output_path(self, new_output_path):
Sets the instances output path and returns the instance.

	Parameters

	new_output_path (str) – What the output path will be set to.

	Returns

	ImageVolume instance

	Return type

	pyifx.misc.ImageVolume

	
set_prefix(new_prefix)

	set_prefix(self, new_prefix):
Sets the instances prefix property and returns the instance.

	Parameters

	new_prefix (str) – What the instances prefix property will be set to.

	Returns

	ImageVolume instance

	Return type

	pyifx.misc.ImageVolume

	
set_volume(new_volume)

	set_volume(self, new_volume):
Sets the instances volume property and returns the volume.

	Parameters

	new_volume (list) – What the instances volume will be set to.

	Returns

	ImageVolume instance

	Return type

	pyifx.misc.ImageVolume

	
volume_to_list(self, level=1)

	The method used to create a list of PyifxImage instances based on the arguments entered in the constructor method. The volume property will be set based on the return value of this function.

	Parameters

	level (int) – The depth to which images should be imported from subdirectories. For infinite depth, set this value to 0. If nothing is entered, this value will default to 1, importing from the root directory exclusively.

	Returns

	PyifxImage list

	Return type

	list

	
class pyifx.misc.PyifxImage(input_path, output_path=None, img=None, create_image=True)

	A class used to create packages of images & their properties created for use with the Pyifx library.

	Variables

	
	input_path (str, NoneType) – The path to where the image is located. If the image does not have an input path, it means that the instance is a result of combining two or more images.

	output_path (str, NoneType) – The path to where edited images should be created. If the image does not have an output path, it means the instance is used for read-only purposes.

	image (numpy.ndarray, NoneType) – The image located at the input path in the form of a numpy n-dimensional array. If the instance does not have an image property, it means that the image had not been read.

	
__init__(self, path, output_path=None, img=None, create_image=True)

	The PyifxImage constructor method.

	Parameters

	
	path (str, NoneType) – The path to where the image is located. Only use None as a value if the image property of the instace is being specified.

	output_path (str, NoneType) – The path to where the edited image should be saved. Only use None as a value if the instance is not going to be saved to a file.

	img (numpy.ndarray, NoneType) – The data used for image editing & processing. The image property of the class will be set based on the input path unless this parameter is set to a value other than None.

	create_image (bool) – Specify whether the image property should be read from the input path. If this is set to true, the image at the input path will override the specified image parameter.

	Returns

	PyifxImage instance

	Return type

	pyifx.misc.PyifxImage

	
__weakref__

	list of weak references to the object (if defined)

	
get_image()

	get_image(self):
Gets the instances image data and returns it.

	Returns

	Image data

	Return type

	numpy.ndarray

	
get_input_path()

	get_input_path(self):
Gets the instances input path and returns it.

	Returns

	Input path

	Return type

	str

	
get_output_path()

	get_output_path(self):
Gets the instances output path and returns it.

	Returns

	Output path

	Return type

	str

	
refresh_image()

	refresh_image(self):
Re-reads image based on input path & overrides the current image property, then returns the instance.

	Returns

	PyifxImage instance

	Return type

	pyifx.misc.PyifxImage

	
set_image(new_image)

	set_image(self, new_image):
Sets the instances image data and returns it.

	Parameters

	new_image (numpy.ndarray) – What the image property will be set to.

	Returns

	PyifxImage instance

	Return type

	pyifx.misc.PyifxImage

	
set_input_path(new_input_path)

	set_input_path(self, new_input_path):
Sets the instances input path and returns the instance.

	Parameters

	new_input_path (str) – What the input path will be set to.

	Returns

	PyifxImage instance

	Return type

	pyifx.misc.PyifxImage

	
set_output_path(new_output_path)

	set_output_path(self, new_output_path):
Sets the instances output path and returns the instance.

	Parameters

	new_output_path (str) – What the output path will be set to.

	Returns

	PyifxImage instance

	Return type

	pyifx.misc.PyifxImage

	
pyifx.misc.combine(img1, img2, out_path, write=True)

	Combines the data of two PyifxImages, ImageVolumes, or ImageLists to form new PyifxImages.

	Parameters

	
	img1 (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The first image to be added to the combination.

	img2 (pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list) – The second image to be added to the combination. Arguments of type ImageVolume and list can be used in conjunction, but images of type PyifxImage must be used together.

	out_path (str) – The path that the combine image(s) will be written to.

	write (bool) – Whether to write the image or not.

	Returns

	PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage

	Return type

	pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Pyifx Documentation

 		
 Getting Started

 		
 Prerequisites

 		
 Dependencies

 		
 Installation

 		
 Importing the Library

 		
 Image Classes

 		
 What are They?

 		
 Pyifx Image

 		
 Image Volume

 		
 Usage

 		
 Importing an Image

 		
 PyifxImage

 		
 ImageVolume

 		
 PyifxImage list

 		
 Using Imported Images

 		
 Function Categories

 		
 Function Structure

 		
 Full Code Example

 		
 Contribution

 		
 Suggested Prerequisites

 		
 Library Contribution

